Mar 19, 2024  
2019-2020 Academic Catalog 
    
2019-2020 Academic Catalog [ARCHIVED CATALOG]

Department of Mechanical Engineering


Mechanical Engineering

 Department Chair: Dr. Mary Vollaro, Associate Professor


The Bachelor of Science in Mechanical Engineering degree program at Florida Polytechnic University is designed to provide a synergetic foundation in the discipline of Mechanical Engineering through broad educational experiences. The program offers concentrations in Aerospace Engineering, Materials and Advanced Manufacturing, Mechanical and Thermal Systems, Nanotechnology, Operations Research, and Advanced Topics. Each Mechanical Engineering concentration is offered on a two-year cycle for junior and seniors (i.e. ME students completing all the courses in the freshman and sophomore levels of the ME plan of study). The program seeks to inculcate an understanding of the fundamental principles of science and engineering by providing students with hands on learning experiences and applied research opportunities.

Advanced Topics

Students select any four ME elective courses to create their own concentration in Advanced Topics.

Aerospace

Aerospace focuses on industries in which engineers design or build aircraft, missiles, and systems for national defense, or spacecraft.  Complementing the general mechanical engineering principles, this concentration covers subjects such as propulsion, stability and control, structures, mechanics, and aerodynamics, which is the study of how air interacts with moving objects. Looking forward, the Aerospace concentration provides students with additional courses to pursue career options at aerospace companies and may spark an interest in undergraduate research and advanced study in graduate school.

Materials and Advanced Manufacturing

Materials and advanced manufacturing focuses on expanding knowledge gained in the core mechanical engineering courses to create and improve products and/or process with ‘cutting edge’ technology. Understanding the unique properties of metals, ceramics, polymers or plastics, and novel materials like foams or biomaterials, allows engineers transform them and create value in useful products. The manufacturing processes must be innovative to meet today’s demands in global market place with cost and sustainability specifications, yet develop practical practices that also improve safety, efficiency, and versatility. This concentration provides a foundation in the fabrication, characterization, modeling and rapid prototyping of such materials and products.

Mechanical and Thermal Systems

Central Florida (as well as the broader state) is home to several companies and firms that support agriculture processing, mining, power-production, and green/eco-construction industries. Common themes within these industries is the need for large machinery to transmit large mechanical forces, operate under high pressures within a thermodynamic cycle, convert energy, and or heat or cool areas in extreme/semi-extreme environments. Students will build on their mechanical engineering core courses with a focus on more specific topics in the traditional areas of mechanical engineering including Heating, Ventilating, and Air Conditioning (HVAC), Computer Manufacturing and Control, Energy Conversion and Sustainability, and Principles of Turbomachinery.

Nanotechnology

Nanotechnology, also known as “the science of small,” focuses on manipulating matter at the level of atoms, molecules and supramolecular structures. This revolutionary discipline affects many fields, from medicine to manufacturing. Students with a concentration in nanotechnology will study nanoscale materials, practices and applications in order to develop high-performance, cutting-edge products. Looking forward, the Nanotechnology concentration provides students with additional courses that will build on their mechanical engineering core courses and may spark an interest in undergraduate research and advanced study in graduate school.

Operations Research

Operations research focuses on modeling and solving operation efficiency challenges, and predicting and demonstrating value-added gains like cost savings. Professionals with expertise in this field are often found in environments with complex operations like ports and shipyards, where they are responsible for managing and improving traffic flow. Study in this concentration combines information technology, applied engineering, and social sciences to provide diverse technical skills, entrepreneurial abilities, and a global viewpoint required to manage the governing forces that move within the marketplace.

Florida Common Prerequisites

Students who started as freshmen at Florida Poly (native students) must complete general education requirements and the following courses to enter the degree program as a junior:

  • CHM 2045 - Chemistry 1 Credits: 3

  • CHM 2045L - Chemistry 1 Laboratory Credits: 1

  • MAC 2311 - Analytic Geometry and Calculus 1 Credits: 4

  • MAC 2312 - Analytic Geometry and Calculus 2 Credits: 4

  • MAC 2313 - Analytic Geometry and Calculus 3 Credits: 4

  • MAP 2302 - Differential Equations Credits: 3

  • PHY 2048 - Physics 1 Credits: 3

  • PHY 2048L - Physics 1 Laboratory Credits: 1

  • PHY 2049 - Physics 2 Credits: 3

  • PHY 2049L - Physics 2 Laboratory Credits: 1

 

Transfer students must meet general education requirements and satisfy the following Florida State Common Prerequisites to enter the degree program as a junior:

CHM2045/2045L

  • or CHM X045C

  • or CHS X440/X440L

  • or CHS X440/CHMX045L

& MAC 2311

  • or MAC X281

& MAC 2312

  • or MAC X282

& MAC 2313

  • or MAC X283

& MAP 2302

  • or MAP X305

& PHY 2048/2048L

  • or PHY X048C

  • or PHY X043/X048L

& PHY 2049/2049L

  • or PHY X049C

  • or PHY X044/X049L

 

Academic Learning Compact - Mechanical Engineering

Florida Polytechnic University’s Academic Learning Compact describes what students, who follow the major’s study plan, will know and be able to do. These are listed as core student learning outcomes.

Program:

Mechanical Engineering

Purpose of the Program:

The Mechanical Engineering Bachelor of Science degree program at Florida Polytechnic University is designed to provide a synergetic foundation in the discipline of Mechanical Engineering through broad educational experiences. The program offers concentrations in Aerospace, Materials and Advanced Manufacturing, Mechanical and Thermal Systems, Nanotechnology, Operations Research, and Advanced Topics. The program seeks to inculcate an understanding of the fundamental principles of science and engineering by providing students with hands on learning experiences and applied research opportunities.

Graduates of the program will demonstrate the following:

Graduates of the Mechanical Engineering program will demonstrate the following:

  1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
  3. an ability to communicate effectively with a range of audiences
  4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Core Learning Outcomes:

Student Learning Outcomes

The Outcomes Involve These Skills:

Upon completion of the Mechanical Engineering Degree, students will possess:

Content

Critical Thinking

Communication

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics

 

X

 

2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors

X

 

 

3. an ability to communicate effectively with a range of audiences

 

 

X

4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts

 

X

 

5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives

X

 

X

6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

 

X

 

7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

X

X

 

Degree Programs